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In a previous paper I considered the first-order perturbation V (~) of characteristic 
functions, perturbation of the world characteristic serving as illustration. In 
various contexts, knowledge of V (1) is, however, insufficient already in principle 
to afford even an approximate solution of some physical problem. I therefore 
go on now to an investigation of the second-order perturbation V (2). To find it 
one not unexpectedly needs to know only the first-order perturbation of the 
extremal. The general theory is illustrated by the detailed calculations giving the 
world characteristic of a particular class of metrics, correct to within third-order 
terms. 

1. I N T R O D U C T I O N  

Let L(O, q, u) be a func t ion  o f  a set o f  funct ions  q(u)=: {qk(u); k =  
1, 2 , . . . ,  n}, the i r  f r s t  der ivat ives  t)(u) =: {0k(u) ;  k = 1, 2 , . . . ,  n} and  o f  the 
i n d e p e n d e n t  var iab le  u expl ici t ly .  I f  t and  t '  are a pa i r  o f  fixed, but  a rb i t ra r i ly  
selected,  t e rmina l  values  o f  u, the co r r e spond ing  values  of  the  qk(u) will 
be xk:=qk( t )  and  Xk':=qk(t'). { x l ,  X2 , .  . . . .  . ,xn,  t} and  { x l ' ,  X 2', , x n ' , t ' }  

may  be t hough t  o f  as the  coord ina tes ,  in a represen ta t ive  space  R ,+ l ,  o f  
the endpo in t s  A , A '  o f  the curve {q(u) , t<-u<-t ' }  j o in ing  A and  A' .  
Hence fo r th  let this curve in fact  be the ex t remal  E, a s s u m e d  unique ,  which  
passes  t h rough  A and  A' ,  i.e., that  curve which  extremizes  the func t iona l  

J 
" t' 

V:= L((I, q, u) du (1) 
t 

When  I~" is eva lua ted  a long  E it becomes  a func t ion  V o f  2n + 2  var iables ,  
namely ,  o f  the  coord ina te s  o f  A and  A' .  This is the  characteristic function 
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which belongs to the "Lagrangian" L: 

V(x', t', x, t) := f L du 
E 

(2) 

where x' := {Xk'}, X := {xk}. It usually goes under different names in various 
branches of physics: the point characteristic in geometrical optics, the 
principal function in analytical mechanics, while in general relativity theory 
I have called it (Buchdahl, 1979) the world characteristic because f~ := �89 
is Synge's world function (Synge, 1960). 

The characteristic function which belongs to any particular problem 
constitutes its solution. It is closely connected with the Hamilton-Jacobi 
theory: it satisfies a Hamilton-Jacobi equation both at A and at A'; and, 
unlike fl, it is in fact the generator of the canonical transformation which 
transforms the canonical variables from their initial to their final values. 
While V thus evidently occupies a central position within the various 
theories, its practical usefulness is severely circumscribed because in all but 
a handful of highly specialized or contrived cases (e.g., Buchdahl, 1970, 
1973, 1975) its explicit evaluation is not feasible. However, it is not unusual 
to encounter situations in which the Lagrangian L differs "only little" from 
a Lagrangian L (~ whose associated characteristic function V (~ is known 
explicitly. Thus, let it be granted that there is a parameter e, sufficiently 
small in absolute value, such that 

L = L ~~ + eL  (1) + E 2 L  (2) + "  �9 �9 (3) 

the series on the right being convergent. Then, correspondingly, 

V = V ( ~  e V ( 1 ) +  e X v ( 2 ) +  �9 �9 �9 (4) 

cases in which (4)does  not obtain being here excluded from consideration. 
In short, one has a perturbation problem, namely, that of devising a method 
for finding the "perturbations" V (~), V(2), . . . ,  in turn. 

In (Buchdahl, 1979) only V (1) was considered, mainly in the context 
of gravitational fields due to weak sources. There one has a rather simple 
state of affairs for two reasons: (i) quite generally, V (1) is the integral of 
L (1) along the unperturbed extremal and (ii) since V (~ corresponds to flat 
space it is known immediately, i.e., 

V ( ~  (rhjhihJ)  1/2 ( 5 )  

where ~/q = diag(1, 1, 1 , - 1 )  and h i := x e - x  i. In these circumstances some 
quite striking general (if formal) results may be obtained. 

Now, under various circumstances knowledge of V (1) alone is, in the 
nature of things, inadequate for the (approximate) solution of some physical 
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problem. For instance, one cannot, even in principle, describe achromatiz- 
ation in optics without taking at least also V (2) into account; likewise, in a 
region in which the Schwarzchild field may be looked upon as a perturbation 
of flat space, the calculation of the precession of  planetary perihelia cannot 
go through without a knowledge of V (2). This paper therefore addresses 
itself to the general problem of finding V (2). Not unexpectedly it turns out 
in Section 2 that to do so one needs to know only the f i rs t -order  perturbation 
of the extremal. Section 3 serves as a reminder that the first-order perturba- 
tion of the extremal is itself contained in V (~ + e V  (1), already known. Section 
4 deals with the world characteristic in particular, special attention being 
paid to the case in which the unperturbed space is flat. By way of illustrating 
the generic results obtained, the actual calculations are carried out in detail 
for a particular class of metrics in Section 5. 

2. GENERIC E X P R E S S I O N S  FOR V (2) 

Essentially one is concerned with the difference A V := V -  V (~ between 
the two characteristic functions 

V(x ' ,  t', x, t) = f L du (6) 
3E 

and 

f 
V(~ ', t', x, t) = [ L (~ du (7) 

d E  0 

where the integration are, respectively, along the extremals E and Eo which 
belong to L and L (~ both E and Eo passing through A and A'. If 
{c71,..., t]", u} are coordinates in R,+I, the equations of E are 

qk = qk(u  ) (8) 

and those of  Eo are 

Cl k = q~o)( U ) (9) 

say. Consistently with the assumption already made that V can be written 
as a series in ascending powers of e, one requires that (8) can be written 

Cl k = q~o)( U ) + eq~,)( u ) + e 2 q ~2)( u ) + ' "  

=: q~o)(U)+Xk(U) (10) 

say, Then 

AV= f {L(4(o) +,~ , q(o)+X, u ) -  L(~ ), q(o), u)} du (11) 
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The notation may be further simplified by agreeing to the convention that 
when (and only when) arguments of Lagrangians, of their derivatives, or, 
later, of  metric tensors are omitted they are to be taken as referring to 
unperturbed extremals, e.g., L stands for L(q(o), q(o), u). If subscripts denote 
derivatives, (11) now becomes 

A V = f { L* + (L,ty( + LqX) + (�89 2 + L,~q,~X + �89 + . . .  } du (12) 

when L* = L -  L (~ This equation has been written as if n = 1. Its interpreta- 
tion when n > 1 is almost self-evident; e.g., L44,~ 2 stands for 
~.,j 2 'XJ o2 L/ aq' aq j. 

Now recall that the qk(u) describe an extremal. The extremality implies 
in the usual way that 

I "  (~Lq(q,  q, u ) +  rlLq((l, q, u)} du = 0 (13) 

if only the otherwise arbitrary functions ~7 (:= {r/k(u)}) vanish at A and A'. 
The choice r /=  X is therefore permissible. Using also (10), (13) then becomes 

f, " {)~[L 4 + (,~L,j,~ + xLqq ) +.  �9 .] + X[ Lq + (.f(L,~q + XLqq) �9 "]} = +. du 0 

(14) 

Subtraction from (12) leads to the relation 

i.e., 

I 
t' 

A V =  {L*-(�89 f(XL4q+�89 . . .} du 
t 

A V = [*jt t' {eL (~) + E 2 [ L  (2) - -  r• 2r(0)~2,~ ~qq -~- ,L~"" r(o),_,qq _~_l,_ 2a 21(o)'~la,_,qq JJJ du + O ( 3 )  

Thus 

= _ I t  c L (j) du V (1) 

as in Buchdahl (1979), while the required relation for V (2) is 

V ( 2 )  = {L(2) - -  / ' ! i ( 0 ) , 4 2  (0) �9 1 (0) 2 ~,2x~qq t / ( l )  -']" Loq q ( D q ( 1 )  +~Lqq q(~))} du 
t 

(14a) 

(15) 

(i6) 



Perturbed Characteristic Functions, II 461 

Clearly one does not need to know the functions q(2)(U) here. (16) may be 
cast into an interesting alternative form as follows�9 Write (14) as 

f " {(xL~ ~ + XL(q ~ + (,f(L* + xL*) + (,f(2Lqq + 2,f(xL,~q + X2Lqq)} du = O(e 3) 
t 

The first two terms do not contribute to the integral on account of the 
extremality of  E0 [cf. equation (13)]. One is left with 

f I �9 (1)  (1)  . 2  (0)  �9 (0)  ~ 2  /- ( 0 )~  (q(DL4 +q(t)Lq ) du = - (q(1)L4q +2q(1)q(1)Lqq +,~(l),--qq J du 
t 

to within terms of  order e 3. Therefore 

V(2) {L(2) l �9 (1) L(1) = +5(q(1)Lo +q(l) q )} du (17) 
t 

3. R E M A R K  O N  ql(lt) 

Equations (15) and (16) constitute a self-contained pair of equations 
in the sense that the functions q(12 required in (16) are themselves directly 
derivable from V(~  ~ (=: V, say). To this end one need only let 
l)(q, u, x, t) assume its function as the generator of the canonical transforma- 
tion connecting A with current points .4 on E. In other words, one solves 
(correctly to the first order in e) the n equations 

O,{~"(q, u,x,  t ) -  V(x' ,  t ' ,x,  t)}=O (18) 

(a~ := O/ax ~) for the q~ as functions of u and, of course, x', t', x, t. 

4. THE CASE OF THE WORLD CHARACTERISTIC 

The world characteristic V belongs to the Lagrangian 

L =  ( dl'dl,) u2 (19) 

where, of course, t~i = g0q j, go being the metric tensor of  a four-dimensional 
Riemann space of signature 2. (Actually the signature and dimensionality 
are here largely irrelevant.) In the present context g0 is assumed to be a 
real-analytic function of a parameter e in a neighborhood of e = 0, i.e., 
when ]e] is sufficiently small g0 can be represented as a power series 

g0 = g~O)+ eg~)+ ^2~(2) ~o + ' ' "  (20) 

the first term on the right being the "base metric." [Note that indices in 
parentheses, characterizing the order (of perturbation) will, as a matter of 
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convenience, be indiscriminately moved up or down; e.g., the inverse of 
g~) is 0 g(o).] Then 

L(~ q, u)= [g~)(q)61iqj] 1/2 

L~ q, u)=�89176 q, u) (21) 

and so on. 
The important case of the flat base metric, g~O) = ~/~, say, represents a 

particularly simple state of affairs, for them the q~0) are linear functions of 
u. However this parameter was chosen originally, one can arrange it to have 
the value 0 at A and 1 at A'. No formal changes occur in the equations 
already derived on account of the homogeneity of L, except in as far as the 
limits of integration are now 0, 1 in place of t, t'. In short, 

qlo)(U) = h'u + x i (22) 

If indices be now lowered with ~Tu instead of g~ one therefore has L (~ 
(hihi)l/2=: l, which, being constant, trivially implies (5). At the same time, 
of  the derivatives of L m) which appear in (16) only the first does not vanish 
identically and it takes the form 

L(o)=  i-1(% _/~/~) (23) 0'r 

with /7 i=  l - lh  ~. (16) now reduces to 

;o V(2) = {L(2) 1 --1 -(1) . i  -- . i  2 -E l  [q~ q( l ) - (h ,qo))  ]} du (24) 

whereas there are no analogous general consequences for (17). On the other 
hand, in the more specialized case in which the perturbed V4 is conformally 
flat, i .e . ,  

g(r) (r = 1, 2, ..) (25) 0 = ~(r)r//./ 
where the O(r) are scalars, it is only (17) that can be usefully rewritten. Thus 
now, 

L ( ' )  = �89 ( ' )  , L(2)  = �89 - 1 ( 0 ( 1 ) ) 2  ] (26) 

and, with ai := a/aq ~ now, 

L(p = �89 f o,)=�89 O) (27) 4 - -q  

After an integration by parts, to remove the derivative of q(o, (17) finally 
becomes 

Io V ( 2 )  : �89 {[ ~0(2) -- 1(0(1))2] -t- 1( 17/j -- l l i~)  q il)O]~b(1) } du ( 2 8 )  
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The projection tensor ~70 - hihj which appeared in (23) has turned up again 
here. 

5. EXPLICIT EXAMPLE 

The generic results obtained above are now to be applied to a tangible 
example. To keep the work as simple as possible I take the V4 to be a 
"conformally perturbed fiat space" the metric of which is, specifically, 

ds 2 = (1 + eql)-2 rlO dq ' dq 2 (29) 

(It is to be taken for granted that only points of the V4 which have leq~[<< 1 
are contemplated.) The perturbation of the metric is 

go - ~70 = [(1 + eq') - 2 -  1]rl0 

whence 

t~(r) = ( - -1 ) r ( r+  l ) (q l )  r 

Then, from (15), (22), (26) and (30) 

Io I Io V (1) = l l  I~t (1) du = - I  ( h l u  d-x 1) du 

i.e., 

Thus 

(30) 

9 = 1[1 -- IE'(XI'-~- x l ) ]  (32) 

Now let the indices a, b take only the values 2, 3, 4. Then 

-- 01 9 = 1-1{(x1'- X 1 ) .~_1 [12 -- (x l ' )2  7!_ (X 1)2]} 

-Oa~ "= l - l ( xa ' -  x'~)[1 --18(XU-{- XI)] .  (33a-d) 

The equations for the unperturbed geodesic are then given to the required 
order by (18), i.e., each of the four expressions on the right of (33a-d) is 
to be equated to the corresponding expression obtained from it by replacing 
# by qJ. In this process l becomes l, say. Because of (22) 

l=  lu+ O(e)  (34) 

Of the four equations one must be redundant, bearing in mind that V 
satisfies the Hamilton-Jacobi equation. Indeed, upon inserting the 
expressions for qi _ x  i in r l o ( q i - x ! ) ( q J - x  j) the latter becomes 12+ O(e2), 

V (1) = - -1 / (x l ' - ] -  x l )  (31)  
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i.e., to the required order one has an identity. One is therefore free to 
stipulate that 

q l ( u ) = h l u + x  I (35) 

exactly. From (33a) one then infers directly that 

[= lu{1-�89 d2/ h l)(1 - u) + O(e2)} (36) 

with 

d2:= l 2 -  (hi) 2 = ~abhah b (37) 

The remaining equations then assume the simple form 

qa( u) = ( hau + x a) -�89 h~/ h l)u(1 - u) + O(e 2) (38) 

Thus 

and 

qlo) = hiu+xi  (39) 

q~,)(u) =0,  q~,)(u) = -�89 - u )  (40) 

From these, by inspection, 

qi ,4(1)=l14(d/hl)2u2(1 _ u)2 (1)~/i 

and 

hlq(t)- .i = l( d2/ hl)( u _�89 

Further, from (26) and (30) 

L(2)= l(ql) 2 

V (2) may now be calculated from (24): 

Io V (2) = l {(hi tt ..1_ xl)2 _�89 _�89 du 

The integration is trivial and gives 

V (2~ = l{�89 + x " x ' +  (x') 2] -~4d 2} (41) 

The same result is obtained, perhaps even more easily, from (28). At any 
rate, the final result is 

V = l { 1 - � 8 9  +x')+�89 (42) 

One has a secure check upon this result since the characteristic function 
which belongs to the metric (29) can be found in closed form by standard 
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methods. Thus 

V = 2e -~ arsinh[�89 1 + exr)- l /2(  1 + exl) -1/2] (43) 

It is easily confirmed that this is in harmony with (42). 
One might gain the impression that the ease with which (42) could be 

obtained was somehow connected with the fact that V could in this case 
be obtained explicitly in terms of known functions. To dispel this notion 
it will suffice to consider the more general metric 

ds 2 = (1 + eq~)-2Nrlij dx i dx j (44) 

where N is any real number. In general one will not be able to find V in 
closed form, whereas the changes required in equations (30)-(41) to accomo- 
date this more general case are largely trivial. Wherever only first-order 
terms are involved one simply replaces e by Ne, while L (2) takes an 
additional factor � 89  + 1). Then, in place of  (42), 

V = l(1 - � 8 9 1 8 9 1 8 9  1)[(xl ')2q-xt 'x '  + ( x 2 )  23 

-~NdEIe  2 + O( e 3)) (45) 

6. CONCLUDING REMARK 

It has already been noted that to find V (1) and V (2) one only needs to 
know q(u)  to the zeroth and first orders, respectively. This state of  affairs 
generalizes to all orders as a consequence of  the absence from the integral 
in (14a) of  terms linear in X and )~. In other words, to determine V (") one 
needs to know only q(r)(U), r = 1, 2 , . . . ,  n -- 1. 
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